Autoplay
Autocomplete
Previous Lesson
Complete and Continue
The Complete AWS Machine Learning Course. Learn to Code
Introduction to Python
00. Introduction (4:47)
01. Intro To Python (5:46)
02. Variables (19:34)
03. Type Conversion Examples (10:21)
04. Operators (7:21)
05. Operators Examples (22:09)
06. Collections (8:39)
07. Lists (11:55)
08. Multidimensional List Examples (8:22)
09. Tuples Examples (8:51)
10. Dictionaries Examples (14:41)
11. Ranges Examples (8:46)
12. Conditionals (6:58)
13. If Statement Examples (10:32)
14. If Statement Variants Examples (11:35)
15. Loops (7:17)
16. While Loops Examples (11:47)
17. For Loops Examples (11:35)
18. Functions (8:04)
19. Functions Examples (9:33)
20. Parameters And Return Values Examples (14:08)
21. Classes and Objects (11:30)
22. Classes Example (13:28)
23. Objects Examples (10:10)
24. Inheritance Examples (17:43)
25. Static Members Example (11:20)
26. Summary and Outro (4:23)
Python_Language_Basics
Intro to Python Slides
Intro to Sagemaker
00. Course Intro (3:15)
01. Intro To Sagemaker (20:39)
02. Creating An AWS Account (8:23)
03. Exploring Sagemaker Interface (7:50)
04. Creating Sagemaker Files (9:53)
05. Summary And Outro (3:10)
06. Project Files
Data and S3
00. Course Intro (2:17)
01. Intro To S3 (12:25)
02. Storing Data In S3 (14:47)
03. Storing Downloaded Data In S3 (17:49)
04. Fetching Data From S3 (8:07)
05. Summary And Outro (3:46)
06. Project Files
Building a Linear Learner in SageMaker
00. Course Intro (4:54)
01. Intro To MNIST (8:23)
02. Getting And Formatting Dataset Part 1 (13:45)
03. Getting And Formatting Dataset Part 2 (19:24)
04. Intro To Linear Learner (3:59)
05. Building And Training The Model (10:28)
06. Deploying The Model (13:36)
07. Deleting The Endpoint (2:19)
08. Summary And Outro (4:04)
09. Project Files
Using the Debugger
00. Course Intro (4:22)
01. Intro To The Debugger (11:39)
02. Project Setup (9:17)
03. Building The Estimator (9:28)
04. Examining Results (16:01)
05. Examing Tensor Performance (14:32)
06. Summary And Outro (4:21)
07. Project Files
SciKit-Learn
00. Course Intro (4:09)
01. Intro To Scikit-Learn (4:03)
02. Exploring The Dataset (3:29)
03. Project Setup (6:10)
04. Importing And Uploading The Dataset (12:38)
05. Creating And Training The Model (10:59)
06. Testing The Model (9:59)
07. Summary And Outro (3:57)
08. Project Files
XGBoost
00. Course Intro (5:36)
01. Intro To XGBoost (5:27)
02. Intro To MNIST (8:15)
03. Project Setup (6:12)
04. Fetching, Formatting, And Uploading The Dataset (16:29)
05. Training The XGBoost Model (8:14)
06. Deploying And Hosting The Model (7:20)
07. Testing And Validating The Model (12:50)
08. Project Overview (8:22)
09. Summary And Outro (3:21)
10. Project Files
Tensorflow Tuning
00. Course Intro (5:15)
01. Intro To Tensorflow (6:19)
02. Intro To Mnist (9:10)
03. Project Setup (8:37)
04. Examining MNIST And Utils Scripts (22:10)
05. Downloading, Formatting, And Uploading Dataset (7:48)
06. Building The Model Containers (9:44)
07. Launching The Tuning Job (5:34)
08. Summary And Outro (3:21)
09. Resources
Project - Image Classification
00. Course Intro (4:22)
01. Project Setup (6:46)
02. Getting And Uploading The Dataset (9:04)
03. Creating The Training Job (13:44)
04. Creating The Inference Model (20:48)
05. Deploying And Hosting The Model (5:55)
06. Realtime Inference (9:50)
07. Summary And Outro (3:55)
08. AWS - Image Classification with Caltech 256
09. Resource Files
Project - Movie Genre Prediction
00. Course Intro (4:54)
01. Project Setup (7:01)
02. Fetching And Manipulating The Movies Dataset (21:33)
03. Fetching And Manipulating The Vocab Dataset (25:48)
04. Creating And Training The Model (13:12)
05. Evaluating Model Performance (10:52)
06. Deploying And Predicting With The Model (7:01)
07. Summary And Outro (3:55)
08. AWS - Movie Genre Predictions
09. Resource Files
25. Static Members Example
Lesson content will be unlocked within 30 minutes.
Teachable is working on this bug.
No further action will be required on your part
.
Thank you for your patience